Exascale Architecture Trends

Pete Beckman

Argonne National Laboratory
Northwestern University

(@ ENERGY

\
HPC has been pretty successful...

Tianhe-2

Sequoié

ory / Northwestern University

Old Wisdom:
Moore’s Law = free exponential speedups!

THE WALL STREET JOURNAL. . Moores law .
' Turnmg 50]09 l_ée ere)GC e
\ASPARC 14]
Tech Axmm RUDKI., /e e
.g 108 (AMD K820 —/SCore2 Quad
g Athlon\. g;;;': Y
- 10 [AMD K6 ~o%% Penttum |
g _ F‘Pe;_tuumpiI
§ 106 - Peé&ﬁm
N MC68020 “i
% 10°yices000 58 a6,
§ . 8086
104 RS
— { o= 8085
-
03 4004
1970 1980 1990 2000 2010 2020 2030

Year

Intel: Moore's Law will
Intel is about to save $1 billion by failing to keep up with continue through 7nm chips

a 50-year-old industry standard m Mark Hachman | @mantuchmer B
A = Pete Bec tional Laboratory / Northwestern University ’

&

Reality: Computing improvements have slowed
dramatically over the past Decade

Transistors you can buy for a fixed #

of dollars in leading technology is no Without Intel CPUs
longer increasing!

Single core vs all cores comparison

N

e & —-— _._—_.——dw/‘
—
2007 2008 2000 2010 201 2012 2013 014 2015
Yours

e -L -L -L -l -l -l -l

Sockets and Cores Growing

o : Single thread performance

e improvement is slow. (Specint)
": -mmmmml!’a”"“&l

: z--:illl‘""
s, . : "Herbert Stein's Law: "If something cannot
i o 1 5 sk go on forever, it will stop,"

*”Intel has done a little better over this period,

Increasing at 21% per year.
*”No Moore?”, Economist, Nov 2013. g °pery

- Courtesy: Andrew Chien
Src: Linley Group Pete Beckman Argonne National Laboratory / Northwestern University

Intel to Acquire FPGA-Specialist Altera for $16.7 20

Billion Comments
by Ryan Smith on June 1, 2015 6:05 PM EST + Add A
Comment

Posted in CPUs FPGA Intel Altera Xeon

-

Today Intel has announced that they are buying Altera in an all-cash deal of $16.7 billion. The deal, having
been rumored for a while now, will see Intel pick up Altera for their Field Programmable Grid Array (FPGA)
experience, with Intel intending to both continue FPGA development and integrate FPGAs into some of their

¢ future products. 5

Old Wisdom:

Efficient Algorithms minimize operations

Classic Analysis of Algorithms: Ops = Time

Make algorithm quicker: minimize flops, compares

Ops: Best, Worst, Average, Space

1.4.5 Thinking About Data Motion

Another important attribute of a matrix algorithm coacerns the actual vol-
ume of data that has to be moved around during execution. Matrices sit
in memory but the computations that involve their entries take place in
functional units. The control of memory traffic is crucial to performance
in many computers. To continue with the factory metapbor used at the
beginning of this section: Can we keep the superfast arithmetic units busy
with enough deliveries of matriz data ond can we ship the resuils back to
memory fast enough to avoid backlog? F1G.1.4.3 depicts the typical situs-
tion in an advanced uniprocessor environment. Details vary from machine

| Functional Units |

i !
|

| Cache
I |

[Main Memory |

1 |

I Disk |

Fic. 1.4.3 Memory Hierarchy

but two “axioms;; prevail:

level in the hierarchy has a Emited capacity and for economic
this capacity is usually smaller as we ascend the hierarchy.

is a cost, sometimes relatively great, associsted with the moving
data between two levels in the hierarchy.

1996

Pete Beckman

Argonne National Laboratory / Northwe

The design of an efficient matrix algorithm requires careful thinking about
the flow of data in between the various levels of storage. 'I'bethottouch

tnddmmmahmmhpommhthhm
stern-University-

Reality:
Efficient = optimize data movement (and power)

We’ve Hit a Power Ceiling

-

Lol . .
% " PRI Comparing Data Movement to Operations
é 10 -, ‘:.: ::.;.'1-'; * . -w. 10000 ﬁ_:_
: -
™~ - - s - .-I - S .I
M- '_ 1000
1
N T T T T T R RS-
8100
= =9=2008 (45nm)
C‘é =#-2018 (11nm)
The Clock Ceiling & 10 -
10,000 - E
l:ﬁ 3\
2 L . S
1,000 AAMEE - a 1
S oY S & N N X S & &
F #1434 O ST C I L
2 = > e
° o + + % = N & o Oszxé\ %\((” o
FE - \o(a
w2 " Courtesy: John Shalf
3 3 8 8 2 2 3 2 g
= = = = = = = = =z
 — — Pipelining, load/store, GPGU...
- Courtesy: Peter Kogge
6 "_“\;— g = Pete Beckman Argonne National Laboratory / Northwestern University
o

Old Wisdom:
Parallel Algorithms: Equal Work = Equal Time

(computers run at predictable speeds)

SPMD Code: Divide data into equal sized chucks across p processors

For all timesteps {
exchange data with neighbors

compute on local data

barrier
pkg0=2600; pkg1=2600 pkg0=2600; pkg1=2601
100,

8

8
8

Temperature (° C)
3
Temperature (° C)
(2]
o

-+-nt; pkg0 --nt; pkg0
-e-nt; pkg1 --nt; pkg1
40. -*-nb; pkg0 404 -¢-nb; pkg0
-°-nb; pkg1| -e-nb; pkg1
200 200 400 600 200 200 400 600
Increments of 2 Seconds

Increments of 2 Seconds

Pete Beckman Argonne National Laboratory / Northwestern University

We live with dynamic now...

110W Limit

3.0

N
wn

CPU Frequency [GHz]
~N
=}

15

9.5

9.0

[Gfiop/s]
-]
w

8.0

— CPUPKGO
—— CPUPKG1

AV M W WM N

NN]

500 600

1.5

0 100 200 300 400
Mo I
— CPUPKGO
—— CPUPKG1

0 100 200 300 400
Time [S)
~ Pete Beckman

500 600

8.0

7.5

115W Limit
— CPUPKGO
20 — CPUPKG1
5 2.5 o
>
%
o 20
a.
Q
15}
0 100 200 300 200 500 600
Time [S]
95 . v y
—— CPUPKGO
1 — CPUPKG1
9.0
v
g 85
-
=

0

100

200

300 400
Time [S)

Argonne National Laboratory / Northwestern University

500 600

Reality: Performance is Highly Variable

Memory Hierarchy Depth
(1-150-?)

Ranger Local and Remote Latency
single-stream pointer-chasing, 128 byte stride

Rewane 10ad betwere ches O &)

")
100 R bt s breyonng oo
e = 4
ot memary oo NS 08)
»

-0

-2
Bomote reads betawen (hps § &)

-0y

'xw & Bl ::-u'-;mm:-u:.'_“ :;c
2
1 —13
‘E‘ a —i)
i
2 [——21
30
» a2 %
u 33
2 =l 0 56 12 02e 2088 4096 8192 16384 32768 6SS3E 131002 262344 S22E8 104850%
[| Base Array Size (\B)
® Turbo Courtesy: McCalpin
+ new Non-volatile memory (3,000 cycles)

+ old Non-volatile memory Flash (150,000 cycles)

2009 2015

A ; Pete Beckman Argonne National Laboratory / Northwestern University

10
Courtesy: Andrew Chien

The New Exascale Reality

. C : il c L el fort
— Rapid exponential improvement is over, slow improvement will
continue for awhile... Parallelism explodes, SQUEEEEZE!

. .

— More operations can better, optimize for locality, data movement,
power

" CompUterstrur-at-fxed-predictable-speed——

— Increasing dynamic and flexible, complication and advantage

11
Pete Beckman Argonne National Laboratory / Northwestern University

What Prevents Scalability?

(in the large and in the small)

" |nsufficient parallelism

— As the problem scales, more parallelism must be found

" |Insufficient latency hiding

— As the problem scales, more latency must be hidden

= |nsufficient resources (Memory, BW, Flops)

— As the problem scales, so must the resources needed

12
Pete Beckman Argonne National Laboratory / Northwestern University

What Prevents Scalability?

(in the large and in the small)

" |nsufficient parallelism

— As the problem scales, more parallelism must be found

Insufficient latency hiding

— As the problem scales, more latency must be hidden

= |nsufficient resources (Memory, BW, Flops)

— As the problem scales, so must the resources needed

As we scale machine, system becomes more dynamic

As we squeeze power, system becomes more dynamic
As we address resilience, system becomes more dynamic
As we share networks, system becomes more dynamic

13
@ Pete Beckman Argonne National Laboratory / Northwestern University

R
Our Hardware is Dynamic, Adaptive Today! A NE

(the future is even more dynamic)

Bulk Synchronous is our scaling problem

* #MPI (library that moves data with put/get or send/recv)
e We must focus on dynamic behavior

“0OS Noise” and “jitter” is a legacy distraction

* OS & Runtime must be VERY active...

Load balancing is necessary, but not sufficient...

- e How do we design software in this new era?
lﬁ/'_\ * How do we build latency tolerant algs?

/ \ Can we create tools that measure, learn,

{IX 3 predict, and then improve performance?

14
Pete Beckman Argonne National Laboratory / Northwestern University

But yet, We Pretend our World is Not
Dynamic

= Trinity/NERSC-

“The system shall provide and consistent runtimes. An application’s
runtime (i.e. wall clock time) shall not change by more than 3% from run-to-
run in dedicated mode and 5% in production mode.“

2 % Top Ten Exascale
i (7] Research Challenges

ASCAC Top 10 Research Challenges for Exascale

*“[...] power management [..] through dynamic adjustment of
system balance to fit within a fixed power budget”

*[...] Enabling [...] dynamic optimizations [...] (power, performance,
and reliability) will be crucial to scientific productivity. “

*“[...] Next-generation runtime systems are under development
that support different mixes of several classes of dynamic
adaptive functionality. “

“dynamic” mentioned 43 times in 86 pg report

Q Pete Beckman Argonne National Laboratory / Northwestern University

15

Lessons for the Future

= Code should be as static as possible, but no more so

= 1) Prepare: Create flexibility via over-decomposition, clear expression of
dependencies

= 2) Take small steps to becoming more pliable.... statically
— (static) mapping of resource (slow/fast; heat)
— (static) load balancing (periodic repartitioning)
— (static) dependency graph tiling of stencils to match communication

= 3) Find goal-oriented optimization
— Dynamic lightweight work-sharing
— Dynamic power management

— Dynamic data movement across hierarchy
Code should not consider dynamic a performance error
(e.g. NERSC)

Pete Beckman Argonne National Laboratory / Northwestern University

16

] <" Exascale System SRy
Exascale Operating System [:
---------------------- - 1
E { Enclave2 |/ Enclavel -
- Memt _ gt E

| e
& Backplane i

. B
| [Comeme i compute E
: Nodes Nodes 1
i Z | !
\ R /
e N R S e o

ANL: Pete Beckman, Marc Snir, Pavan Balaji, Rinku Gupta, Kamil Iskra,
Franck Cappello, Rajeev Thakur, Kazutomo Yoshii
LLNL: Maya Gokhale, Edgar Leon, Barry Rountree, Martin Schulz, Brian Van Essen
PNNL: Sriram Krishnamoorthy, Roberto Gioiosa
UC: Henry Hoffmann
UIUC: Laxmikant Kale, Eric Bohm, Ramprasad Venkataraman
UO: Allen Malony, Sameer Shende, Kevin Huck
UTK: Jack Dongarra, George Bosilca, Thomas Herault

Pete Beckman Argonne National Laboratory / Northwestern University

17

Argobots

= Lightweight Low-level Threading/
Tasking Framework

= Separation of abstraction and
mapping to implementation
= Massive parallelism
— Exec. Streams guarantee progress
— Work Units execute to completion

= (Clearly defined memory semantics
— Consistency domains
* Provide Eventual Consistency
— Software can manage consistency

— Work Units can access any
consistency domain

— Support explicit memory placement
and movement
= Put/Get/Send/Recv requires library
call in OSR, but could be transparent
at application level

= Exploring fault model and atomics

Work
Unit
Execution

Stream
Execution Model
CD1 CD1 CD1
CDO

i

O
Cache-Coherent
Memory

Non-Coherent

Memory

Pete Beckman Argonne National Laboratory / Northwestern University

18

Threading-aware Task Schedulers

Task Schedulers+Argobots

= Task scheduling built on tasklets and user-level
threads in argobots

= Focus on two classes of task graphs
— Fork-join computations
— Compact DAG representations
= Exploit the scheduling characteristics of argobots

— Control over mapping threads to cores
— Control over scheduling

— Split-phase communication and task scheduling
= |nitial Implementation

— Argobots-optimized Cilk scheduler

— Parallel Task Graph Engine (PTGE)

©
O

19
Pete Beckman Argonne National Laboratory / Northwestern University

THE WALL STREET JOURNAL Q
Intel, Micron Claim Chip

Breakthrough

Companies say new memory chips are up to 1,000 times faster
than NAND chips

Our Future is Memory Hierarchy
(adding dynamic behavior)

20
Pete Beckman Argonne National Laboratory / Northwestern University

Conclusions: The Times They are A-Changin’

= Embrace DYNAMIC!
— Work # Time

= Optimize algorithms for data movement
= |Imagine multiple memory allocators

— Manual data movement
= Learn to love runtime systems

= Explore adaptive, learning, predictive
software stacks that takes humans out of
the loop...

— Sorry humans, you are too slow.
— Reject human tuning papers...

g - el 21
é Pete Beckman Argonne National Laboratory / Northwestern University

Questions?

oﬂkman Argonne National Laboratory / Northwestern University

22

